Hopf bifurcation in 3-dimensional polynomial vector fields

Iván Sánchez-Sánchez, Joan Torregrosa

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

5 Citas (Scopus)

Resumen

In this work we study the local cyclicity of some polynomial vector fields in R 3. In particular, we give a quadratic system with 11 limit cycles, a cubic system with 31 limit cycles, a quartic system with 54 limit cycles, and a quintic system with 92 limit cycles. All limit cycles are small amplitude limit cycles and bifurcate from a Hopf type equilibrium. We introduce how to find Lyapunov constants in R 3 for considering the usual degenerate Hopf bifurcation with a parallelization approach, which enables to prove our results for 4th and 5th degrees.

Idioma originalInglés
Número de páginas13
PublicaciónCommunications in Nonlinear Science and Numerical Simulation
Volumen105
DOI
EstadoPublicada - 1 feb 2022

Huella

Profundice en los temas de investigación de 'Hopf bifurcation in 3-dimensional polynomial vector fields'. En conjunto forman una huella única.

Citar esto