Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism

Arnau Baró*, Alícia Fornes, Carles Badal

*Autor correspondiente de este trabajo

Producción científica: Otra contribución

20 Citas (Scopus)

Resumen

Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.

Idioma originalInglés
Número de páginas6
ISBN (versión digital)978-1-7281-9966-5
DOI
EstadoPublicada - 2020

Series de publicaciones

NombreInternational Conference on Handwriting Recognition
EditorIEEE COMPUTER SOC
ISSN (impreso)2167-6445

Huella

Profundice en los temas de investigación de 'Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism'. En conjunto forman una huella única.

Citar esto