Hamiltonian selfdistributive quasigroups

Dolors Herbera, Tomáš Kepka, Petr Němec

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

2 Citas (Scopus)

Resumen

The problem of the existence of non-medial distributive hamiltonian quasigroups is solved. Translating this problem first to commutative Moufang loops with operators, then to ternary algebras and, finally, to cocyclic modules over ℤ [x, x-1, (1-x)-1], it is shown that every non-medial distributive hamiltonian quasigroup has at least 729 elements and that there are just two isomorphism classes of such quasigroups of the least cardinality. The quasigroups representing these two classes are anti-isomorphic. © 2005 Elsevier Inc. All rights reserved.
Idioma originalInglés
Páginas (desde-hasta)70-104
PublicaciónJournal of Algebra
Volumen289
DOI
EstadoPublicada - 1 jul 2005

Huella

Profundice en los temas de investigación de 'Hamiltonian selfdistributive quasigroups'. En conjunto forman una huella única.

Citar esto