Growth and dispersal with inertia: Hyperbolic reaction-transport systems

Vicenç Méndez, Daniel Campos, Werner Horsthemke

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

26 Citas (Scopus)

Resumen

© 2014 American Physical Society. We investigate the behavior of five hyperbolic reaction-diffusion equations most commonly employed to describe systems of interacting organisms or reacting particles where dispersal displays inertia. We first discuss the macroscopic or mesoscopic foundation, or lack thereof, of these reaction-transport equations. This is followed by an analysis of the temporal evolution of spatially uniform states. In particular, we determine the uniform steady states of the reaction-transport systems and their stability properties. We then address the spatiotemporal behavior of pure death processes. We end with a unified treatment of the front speed for hyperbolic reaction-diffusion equations with Kolmogorov-Petrosvskii-Piskunov kinetics. In particular, we obtain an exact expression for the front speed of a general class of reaction correlated random walk systems. Our results establish that three out of the five hyperbolic reaction-transport equations provide physically acceptable models of biological and chemical systems.
Idioma originalInglés
Número de artículo042114
PublicaciónPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volumen90
DOI
EstadoPublicada - 7 oct 2014

Huella

Profundice en los temas de investigación de 'Growth and dispersal with inertia: Hyperbolic reaction-transport systems'. En conjunto forman una huella única.

Citar esto