Global centers of a family of cubic systems

Raul Felipe Appis, Jaume Llibre

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

Resumen

Consider the family of polynomial differential systems of degree 3, or simply cubic systems (Formula presented.) in the plane R. An equilibrium point (x,y) of a planar differential system is a center if there is a neighborhood U of (x,y) such that U\{(x,y)} is filled with periodic orbits. When R\{(x,y)} is filled with periodic orbits, then the center is a global center. For this family of cubic systems Lloyd and Pearson characterized in Lloyd and Pearson (Comput Math Appl 60:2797-2805, 2010) when the origin of coordinates is a center. We classify which of these centers are global centers.
Idioma originalInglés
Páginas (desde-hasta)1373-1389
Número de páginas17
PublicaciónAequationes Mathematicae
Volumen98
N.º5
DOI
EstadoPublicada - oct 2024

Huella

Profundice en los temas de investigación de 'Global centers of a family of cubic systems'. En conjunto forman una huella única.

Citar esto