Gaussian estimates for the density of the non-linear tochastic heat equation in any space dimension

Eulalia Nualart, Llus Quer-Sardanyons

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

12 Citas (Scopus)

Resumen

In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the non-linear stochastic heat equation in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise. © 2011 Elsevier B.V. All rights reserved.
Idioma originalInglés
Páginas (desde-hasta)418-447
PublicaciónStochastic Processes and their Applications
Volumen122
DOI
EstadoPublicada - 1 ene 2012

Huella

Profundice en los temas de investigación de 'Gaussian estimates for the density of the non-linear tochastic heat equation in any space dimension'. En conjunto forman una huella única.

Citar esto