Fixed-Quality Compression of Remote Sensing Images With Neural Networks

Sebastià Mijares Verdú*, Marie Chabert, Thomas Oberlin, Joan Serra Sagrista

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

Fixed-quality image compression is a coding paradigm where the tolerated introduced distortion is set by the user. This article proposes a novel fixed-quality compression method for remote sensing images. It is based on a neural architecture we have recently proposed for multirate satellite image compression. In this article, we show how to efficiently estimate the reconstruction quality using an appropriate statistical model. The performance of our approach is assessed and compared against recent fixed-quality coding techniques and standards in terms of accuracy and rate-distortion, as well as with recent machine learning compression methods in rate-distortion, showing competitive results. In particular, the proposed method does not introduce artifacts even when coding neighboring areas at different qualities.
Idioma originalInglés
Páginas (desde-hasta)12169-12180
Número de páginas12
PublicaciónIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Volumen17
DOI
EstadoPublicada - 3 jul 2024

Huella

Profundice en los temas de investigación de 'Fixed-Quality Compression of Remote Sensing Images With Neural Networks'. En conjunto forman una huella única.

Citar esto