Feature selection combining genetic algorithm and adaboost classifiers

H. Chouaib, Oriol Ramos Terrades, S. Tabbone, F. Cloppet, N. Vincent

Producción científica: Informe/libroLibro de ActasInvestigaciónrevisión exhaustiva

29 Citas (Scopus)

Resumen

This paper presents a fast method using simple genetic algorithms (GAs) for features selection. Unlike traditional approaches using GAs, we have used the combination of Adaboost classifiers to evaluate an individual of the population. So, the fitness function we have used is defined by the error rate of this combination. This approach has been implemented and tested on the MNIST database and the results confirm the effectiveness and the robustness of the proposed approach.
Idioma originalInglés
Número de páginas4
DOI
EstadoPublicada - 2008

Huella

Profundice en los temas de investigación de 'Feature selection combining genetic algorithm and adaboost classifiers'. En conjunto forman una huella única.

Citar esto