Resumen
Consider a standard Cantor set in the plane of Hausdorff dimension
1. If the linear density of the associated measure µ vanishes, then the set of points
where the principal value of the Cauchy singular integral of µ exists has Hausdorff
dimension 1. The result is extended to Cantor sets in R
d of Hausdorff dimension
α and Riesz singular integrals of homogeneity −α, 0 < α < d : the set of points
where the principal value of the Riesz singular integral of µ exists has Hausdorff
dimension α. A martingale associated with the singular integral is introduced to
support the proof.
Idioma original | Inglés |
---|---|
Número de páginas | 14 |
Publicación | Pacific Journal of Mathematics |
Estado | Aceptada en prensa - 1 dic 2023 |