Existence and smoothness of the density for spatially homogeneous SPDEs

David Nualart, Lluís Quer-Sardanyons

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

49 Citas (Scopus)

Resumen

In this paper, we extend Walsh's stochastic integral with respect to a Gaussian noise, white in time and with some homogeneous spatial correlation, in order to be able to integrate some random measure-valued processes. This extension turns out to be equivalent to Dalang's one. Then we study existence and regularity of the density of the probability law for the real-valued mild solution to a general second order stochastic partial differential equation driven by such a noise. For this, we apply the techniques of the Malliavin calculus. Our results apply to the case of the stochastic heat equation in any space dimension and the stochastic wave equation in space dimension d=1,2,3. Moreover, for these particular examples, known results in the literature have been improved. © 2007 Springer Science + Business Media B.V.
Idioma originalInglés
Páginas (desde-hasta)281-299
PublicaciónPotential Analysis
Volumen27
DOI
EstadoPublicada - 1 nov 2007

Huella

Profundice en los temas de investigación de 'Existence and smoothness of the density for spatially homogeneous SPDEs'. En conjunto forman una huella única.

Citar esto