Existence and Regularity of the Density for Solutions to Semilinear Dissipative Parabolic SPDEs

Carlo Marinelli, Eulalia Nualart, Lluís Quer-Sardanyons

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

9 Citas (Scopus)

Resumen

We prove existence and smoothness of the density of the solution to a nonlinear stochastic heat equation on L2(O) (evaluated at fixed points in time and space), where O is an open bounded domain in ℝd with smooth boundary. The equation is driven by an additive Wiener noise and the nonlinear drift term is the superposition operator associated to a real function which is assumed to be (maximal) monotone, continuously differentiable, and growing not faster than a polynomial. The proof uses tools of the Malliavin calculus combined with methods coming from the theory of maximal monotone operators. © 2013 Springer Science+Business Media Dordrecht.
Idioma originalInglés
Páginas (desde-hasta)287-311
PublicaciónPotential Analysis
Volumen39
N.º3
DOI
EstadoPublicada - 1 oct 2013

Huella

Profundice en los temas de investigación de 'Existence and Regularity of the Density for Solutions to Semilinear Dissipative Parabolic SPDEs'. En conjunto forman una huella única.

Citar esto