Resumen
© 2017 Elsevier Ltd Bioelectrochemical systems (BESs) are being studied as an alternative technology for the treatment of several kinds of wastewaters with a lack of electron donor such as high-strength sulfate wastewaters. This study evaluates different parameters that influence the simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode: ion-exchange membrane (IEM), cathodic pH and cathode potential. Two different membranes were studied to evaluate sulfate and sulfide adsorption and diffusion from the cathode to the anode, observing that a cation-exchange membrane (CEM) widely decreased these effects. Three different cathode pH (5.5, 7 and 8.5) were studied in a long-term operation observing that pH = 7 was the optimal for sulfate removal, achieving reduction rates around 150 mg S-SO42- L−1 d−1. Microbial community analysis of the cathode biofilm demonstrated a high abundance of sulfate-reducing bacteria (SRB, 67% at pH 7, 60% at pH 8.5 and 42% at pH 5.5), mainly Desulfovibrio sp. at pH 5.5 and 7 and Desulfonatronum sp. at pH 8.5. The cathode potential also was studied from −0.7 to −1.2 V vs. SHE achieving sulfate removal rates higher than 700 mg S-SO42- L−1 d−1 at cathode potentials from −1.0 to −1.2 V vs. SHE. Also, the highest cathodic recovery and the highest sulfur species imbalance were observed at a cathode potential of −1.0 V vs. SHE, which indicated a higher elemental sulfur production.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 301-310 |
Publicación | Water Research |
Volumen | 123 |
DOI | |
Estado | Publicada - 1 ene 2017 |