TY - JOUR
T1 - Eco-innovation of a wooden based modular social playground: Application of LCA and DfE methodologies
AU - González-García, Sara
AU - García Lozano, Raúl
AU - Buyo, Pablo
AU - Pascual, Rosario Castilla
AU - Gabarrell, Xavier
AU - Rieradevall I Pons, Joan
AU - Moreira, M. Teresa
AU - Feijoo, Gumersindo
PY - 2012/5/1
Y1 - 2012/5/1
N2 - Life Cycle Assessment and Design for the Environment are combined in this study to identify and improve the environmental performance of a wooden modular playground. This study covers the whole life cycle of the production process of the playground and its final distribution to the users from a cradle-to-gate perspective. This wooden product was chosen since it is a very representative urban element of the wooden sector in public spaces. To do the assessment, a Galician wood company was analysed in detail. Ten impact categories have been assessed: Abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity and photochemical oxidant formation. According to the environmental results, the assembling stage is the most important contributor to the environmental profile with contributions higher than 60% to all categories. Both lacquering and energy stages are relevant in terms of ecotoxicity impact categories. In addition, the environmental hot spots were identified in the life cycle: the production of wood based materials (with large contribution to ecotoxicity categories) due to the boards, the production of metals (important contributions to acidification, human toxicity and oxidants formation) and the transport related activities (with remarkable contributions to abiotic depletion, eutrophication and global warming) mainly due to the wooden materials. Concerning the results from the eco-design, the proposed strategies were evaluated/selected from a technological, economic and social point of view by an interdisciplinary team of researchers and company workers, showing that the strategies with higher viability were: redesign product to reduction of materials used, substitution of aluminum by stainless steel, combination of maritime and road transport for wooden materials, minimisation of the amount of components in the structure and installation area, definition of a protocol for disassembling and use of the product and packaging and, multifunctional and multiuser design. Important reductions (up to 11%) in the environmental profile (normalised index) can be achieved with these alternatives. The results obtained in this work allow predicting the importance of the selection of raw materials on the environmental burdens associated. Future work will focus on the manufacture of a prototype eco-designed wooden modular playground. © 2011 Elsevier Ltd. All rights reserved.
AB - Life Cycle Assessment and Design for the Environment are combined in this study to identify and improve the environmental performance of a wooden modular playground. This study covers the whole life cycle of the production process of the playground and its final distribution to the users from a cradle-to-gate perspective. This wooden product was chosen since it is a very representative urban element of the wooden sector in public spaces. To do the assessment, a Galician wood company was analysed in detail. Ten impact categories have been assessed: Abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity and photochemical oxidant formation. According to the environmental results, the assembling stage is the most important contributor to the environmental profile with contributions higher than 60% to all categories. Both lacquering and energy stages are relevant in terms of ecotoxicity impact categories. In addition, the environmental hot spots were identified in the life cycle: the production of wood based materials (with large contribution to ecotoxicity categories) due to the boards, the production of metals (important contributions to acidification, human toxicity and oxidants formation) and the transport related activities (with remarkable contributions to abiotic depletion, eutrophication and global warming) mainly due to the wooden materials. Concerning the results from the eco-design, the proposed strategies were evaluated/selected from a technological, economic and social point of view by an interdisciplinary team of researchers and company workers, showing that the strategies with higher viability were: redesign product to reduction of materials used, substitution of aluminum by stainless steel, combination of maritime and road transport for wooden materials, minimisation of the amount of components in the structure and installation area, definition of a protocol for disassembling and use of the product and packaging and, multifunctional and multiuser design. Important reductions (up to 11%) in the environmental profile (normalised index) can be achieved with these alternatives. The results obtained in this work allow predicting the importance of the selection of raw materials on the environmental burdens associated. Future work will focus on the manufacture of a prototype eco-designed wooden modular playground. © 2011 Elsevier Ltd. All rights reserved.
KW - Design for the environment
KW - Eco-design
KW - Environmental performance
KW - Life cycle assessment
KW - Urban element
KW - Wood product
U2 - 10.1016/j.jclepro.2011.12.028
DO - 10.1016/j.jclepro.2011.12.028
M3 - Article
SN - 0959-6526
VL - 27
SP - 21
EP - 31
JO - Journal of Cleaner Production
JF - Journal of Cleaner Production
ER -