Early adaptive evaluation scheme for data-driven calibration in forest fire spread prediction

Edigley Fraga*, Ana Cortés, Andrés Cencerrado, Porfidio Hernández, Tomàs Margalef

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

4 Citas (Scopus)

Resumen

Forest fires severally affect many ecosystems every year, leading to large environmental damages, casualties and economic losses. Established and emerging technologies are used to help wildfire analysts determine fire behavior and spread aiming at a more accurate prediction results and efficient use of resources in fire fighting. Natural hazards simulations need to deal with data input uncertainty and their impact on prediction results, usually resorting to compute-intensive calibration techniques. In this paper, we propose a new evaluation technique capable of reducing the overall calibration time by 60% when compared to the current data-driven approaches. This is achieved by means of the proposed adaptive evaluation technique based on a periodic monitoring of the fire spread prediction error $$\epsilon $$ estimated by the normalized symmetric difference for each simulation run. Our new strategy avoid wasting too much computing time running unfit individuals thanks to an early adaptive evaluation.

Idioma originalInglés estadounidense
Páginas (desde-hasta)17-30
Número de páginas14
PublicaciónLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
DOI
EstadoPublicada - 1 ene 2020

Huella

Profundice en los temas de investigación de 'Early adaptive evaluation scheme for data-driven calibration in forest fire spread prediction'. En conjunto forman una huella única.

Citar esto