Dynamics and fate of blue carbon in a mangrove–seagrass seascape: influence of landscape configuration and land-use change

Maria E. Asplund*, Martin Dahl, Rashid O. Ismail, Ariane Arias-Ortiz, Diana Deyanova, João N. Franco, Linus Hammar, Arielle I. Hoamby, Hans W. Linderholm, Liberatus D. Lyimo, Diana Perry, Lina M. Rasmusson, Samantha N. Ridgway, Gloria Salgado Gispert, Stéphanie D’Agata, Leah Glass, Jamal Angelot Mahafina, Volanirina Ramahery, Pere Masque, Mats BjörkMartin Gullström

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

23 Citas (Scopus)


Context: Seagrass meadows act as efficient natural carbon sinks by sequestering atmospheric CO2 and through trapping of allochthonous organic material, thereby preserving organic carbon (Corg) in their sediments. Less understood is the influence of landscape configuration and transformation (land-use change) on carbon sequestration dynamics in coastal seascapes across the land–sea interface. Objectives: We explored the influence of landscape configuration and degradation of adjacent mangroves on the dynamics and fate of Corg in seagrass habitats. Methods: Through predictive modelling, we assessed sedimentary Corg content, stocks and source composition in multiple seascapes (km-wide buffer zones) dominated by different seagrass communities in northwest Madagascar. The study area encompassed seagrass meadows adjacent to intact and deforested mangroves. Results: The sedimentary Corg content was influenced by a combination of landscape metrics and inherent habitat plant- and sediment-properties. We found a strong land-to-sea gradient, likely driven by hydrodynamic forces, generating distinct patterns in sedimentary Corg levels in seagrass seascapes. There was higher Corg content and a mangrove signal in seagrass surface sediments closer to the deforested mangrove area, possibly due to an escalated export of Corg from deforested mangrove soils. Seascapes comprising large continuous seagrass meadows had higher sedimentary Corg levels in comparison to more diverse and patchy seascapes. Conclusion: Our results emphasize the benefit to consider the influence of seascape configuration and connectivity to accurately assess Corg content in coastal habitats. Understanding spatial patterns of variability and what is driving the observed patterns is useful for identifying carbon sink hotspots and develop management prioritizations. © 2021, The Author(s).
Idioma originalInglés
Páginas (desde-hasta)1489-1509
Número de páginas21
PublicaciónLandscape Ecology
EstadoPublicada - may 2021

Palabras clave

  • Land–sea interface
  • Mangrove deforestation
  • Seagrass meadows
  • Seascape connectivity
  • Sedimentary carbon storage


Profundice en los temas de investigación de 'Dynamics and fate of blue carbon in a mangrove–seagrass seascape: influence of landscape configuration and land-use change'. En conjunto forman una huella única.

Citar esto