Diastolic and isoperimetric inequalities on surfaces

Florent Balacheff*, Stephane Sabourau

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

26 Citas (Scopus)
1 Descargas (Pure)

Resumen

We prove a universal inequality between the diastole, defined using a minimax process on the one-cycle space, and the area of closed Riemannian surfaces. Roughly speaking, we show that any closed Riemannian surface can be swept out by a family of multi-loops whose lengths are bounded in terms of the area of the surface. This diastolic inequality, which relies on an upper bound on Cheeger's constant, yields an effective process to find short closed geodesics on the two-sphere, for instance. We deduce that every Riemannian surface can be decomposed into two domains with the same area such that the length of their boundary is bounded from above in terms of the area of the surface. We also compare various Riemannian invariants on the two-sphere to underline the special role played by the diastole.

Idioma originalInglés
Páginas (desde-hasta)579-605
Número de páginas27
PublicaciónAnnales Scientifiques de l'Ecole Normale Superieure
Volumen43
N.º4
DOI
EstadoPublicada - 2010

Huella

Profundice en los temas de investigación de 'Diastolic and isoperimetric inequalities on surfaces'. En conjunto forman una huella única.

Citar esto