Data science, analytics and artificial intelligence in e-health: trends, applications and challenges

Juliana Castaneda, Laura Calvet Liñan, Sergio Benito, Abtin Tondar, Ángel Alejandro Juan Pérez

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

5 Citas (Scopus)

Resumen

More than ever, healthcare systems can use data, predictive models, and intelligent algorithms to optimize their operations and the service they provide. This paper reviews the existing literature regarding the use of data science/analytics methods and artificial intelligence algorithms in healthcare. The paper also discusses how healthcare organizations can benefit from these tools to efficiently deal with a myriad of new possibilities and strategies. Examples of real applications are discussed to illustrate the potential of these methods. Finally, the paper highlights the main challenges regarding the use of these methods in healthcare, as well as some open research lines.
Idioma originalInglés
Páginas (desde-hasta)81-128
Número de páginas47
PublicaciónSORT
Volumen47
N.º1
DOI
EstadoPublicada - 2023

Huella

Profundice en los temas de investigación de 'Data science, analytics and artificial intelligence in e-health: trends, applications and challenges'. En conjunto forman una huella única.

Citar esto