Cyclicity of (1,3)-switching FF type equilibria

Xingwu Chen, Jaume Llibre, Weinian Zhang

Producción científica: Contribución a una revistaArtículoInvestigación

5 Citas (Scopus)


© 2019 American Institute of Mathematical Sciences. All rights reserved. Hilbert’s 16th Problem suggests a concern to the cyclicity of planar polynomial differential systems, but it is known that a key step to the answer is finding the cyclicity of center-focus equilibria of polynomial differential systems (even of order 2 or 3). Correspondingly, the same question for polynomial discontinuous differential systems is also interesting. Recently, it was proved that the cyclicity of (1, 2)-switching FF type equilibria is at least 5. In this paper we prove that the cyclicity of (1, 3)-switching FF type equilibria with homogeneous cubic nonlinearities is at least 3.
Idioma originalInglés
Páginas (desde-hasta)6541-6552
PublicaciónDiscrete and Continuous Dynamical Systems - Series B
EstadoPublicada - 1 dic 2019


Profundice en los temas de investigación de 'Cyclicity of (1,3)-switching FF type equilibria'. En conjunto forman una huella única.

Citar esto