Convolutional neural networks can be deceived by visual illusions

Alexander Gomez-Villa, Adrian Martin, Javier Vazquez-Corral, Marcelo Bertalmio

Producción científica: Capítulo de libroCapítuloInvestigaciónrevisión exhaustiva

32 Citas (Scopus)
3 Descargas (Pure)

Resumen

Visual illusions teach us that what we see is not always what is represented in the physical world. Their special nature make them a fascinating tool to test and validate any new vision model proposed. In general, current vision models are based on the concatenation of linear and non-linear operations. The similarity of this structure with the operations present in Convolutional Neural Networks (CNNs) has motivated us to study if CNNs trained for low-level visual tasks are deceived by visual illusions. In particular, we show that CNNs trained for image denoising, image deblurring, and computational color constancy are able to replicate the human response to visual illusions, and that the extent of this replication varies with respect to variation in architecture and spatial pattern size. These results suggest that in order to obtain CNNs that better replicate human behaviour, we may need to start aiming for them to better replicate visual illusions.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Páginas12301-12309
Número de páginas9
ISBN (versión digital)9781728132938
DOI
EstadoPublicada - jun 2019

Serie de la publicación

NombreProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volumen2019-June
ISSN (versión impresa)1063-6919

Huella

Profundice en los temas de investigación de 'Convolutional neural networks can be deceived by visual illusions'. En conjunto forman una huella única.

Citar esto