Comb model: Non-markovian versus markovian

Alexander Iomin*, Vicenç Méndez, Werner Horsthemke

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

8 Citas (Scopus)

Resumen

Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study two generalizations of comb models and present a generic method to obtain their transport properties. The first is a continuous time random walk on a many dimensional m + n comb, where m and n are the dimensions of the backbone and branches, respectively. We observe subdiffusion, ultra-slow diffusion and random localization as a function of n. The second deals with a quantum particle in the 1 + 1 comb. It turns out that the comb geometry leads to a power-law relaxation, described by a wave function in the framework of the Schrödinger equation.

Idioma originalInglés estadounidense
Número de artículo54
Páginas (desde-hasta)1-13
Número de páginas13
PublicaciónFractal and Fractional
Volumen3
N.º4
DOI
EstadoPublicada - 2019

Huella

Profundice en los temas de investigación de 'Comb model: Non-markovian versus markovian'. En conjunto forman una huella única.

Citar esto