Cloud-Based Urgent Computing for Forest Fire Spread Prediction under Data Uncertainties

Edigley Fraga, Ana Cortes, Tomos Margalef, Porfidio Hernandez

Producción científica: Capítulo de libroCapítuloInvestigaciónrevisión exhaustiva

3 Citas (Scopus)

Resumen

Forest fires severely affect many ecosystems every year, leading to large environmental damages, casualties, and economic losses. Emerging and established technologies are used to help wildfire analysts determine fire behavior and spread, aiming at more accurate prediction results and efficient use of resources in fire fighting. We propose a novel forest fire spread prediction platform based on a proven two-stage prediction model devised to deal with input data uncertainties. The model is able to calibrate the unknown parameters based on the real observed data using an iterative process. Since this calibration is compute-intensive and due to the unpredictability of urgent computing needs, we exploit an elastic and scalable cloud-based solution platform implemented through coarse-grain parallel processing using a work queue.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics, HiPC 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas430-435
Número de páginas6
ISBN (versión digital)9781665410168
DOI
EstadoPublicada - 2021

Serie de la publicación

NombreProceedings - 2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics, HiPC 2021

Huella

Profundice en los temas de investigación de 'Cloud-Based Urgent Computing for Forest Fire Spread Prediction under Data Uncertainties'. En conjunto forman una huella única.

Citar esto