TY - JOUR
T1 - Clostridium neurotoxins influence serotonin uptake and release differently in rat brain synaptosomes
AU - Najib, Abderrahim
AU - Pelliccioni, Patricia
AU - Gil, Carles
AU - Aguilera, José
PY - 1999/4/28
Y1 - 1999/4/28
N2 - Clostridium neurotoxins produce inhibition of both basal and K+-evoked serotonin release in rat brain synaptosomes. To produce these effects, tetanus toxin (TeTx), as well as botulinum neurotoxin type A (BoNT/A), added to brain synaptosomes, must be incubated at 37°C over a long interval (hours). This serotonin exocytosis inhibition was abolished with previous treatment with specific Zn2+-metalloprotease inhibitors. Nevertheless, a short incubation time produces different behavior of the indicated neurotoxins: TeTx significantly blocks the sodium-dependent, high-affinity serotonin uptake, whereas a small increase of this uptake was found with BoNT/A. Both Zn2+-metalloprotease active fragments, light chains of TeTx and BoNT/A, are unable to reproduce the block of the serotonin uptake, whereas the C-terminal portion of the TeTx heavy chain (H(C)-TeTx), which binds specifically to the target tissue, inhibited the serotonin uptake in a dose-dependent manner. The IC50 of H(C)TeTx ranges from 0.62 to 2.08 nM. Binding of [3H]imipramine and [3H]serotonin did not change after toxin treatments, which indicates that these clostridium neurotoxins do not act on the serotonin high-affinity site at the serotonin transporter or at other serotonin high-affinity sites. These results could indicate that TeTx and H(C)-TeTx bind to different targets than BoNT/A in the plasma membrane.
AB - Clostridium neurotoxins produce inhibition of both basal and K+-evoked serotonin release in rat brain synaptosomes. To produce these effects, tetanus toxin (TeTx), as well as botulinum neurotoxin type A (BoNT/A), added to brain synaptosomes, must be incubated at 37°C over a long interval (hours). This serotonin exocytosis inhibition was abolished with previous treatment with specific Zn2+-metalloprotease inhibitors. Nevertheless, a short incubation time produces different behavior of the indicated neurotoxins: TeTx significantly blocks the sodium-dependent, high-affinity serotonin uptake, whereas a small increase of this uptake was found with BoNT/A. Both Zn2+-metalloprotease active fragments, light chains of TeTx and BoNT/A, are unable to reproduce the block of the serotonin uptake, whereas the C-terminal portion of the TeTx heavy chain (H(C)-TeTx), which binds specifically to the target tissue, inhibited the serotonin uptake in a dose-dependent manner. The IC50 of H(C)TeTx ranges from 0.62 to 2.08 nM. Binding of [3H]imipramine and [3H]serotonin did not change after toxin treatments, which indicates that these clostridium neurotoxins do not act on the serotonin high-affinity site at the serotonin transporter or at other serotonin high-affinity sites. These results could indicate that TeTx and H(C)-TeTx bind to different targets than BoNT/A in the plasma membrane.
KW - 5-hydroxytryptamine (serotonin)
KW - Botulinum neurotoxin type A
KW - Clostridium neurotoxin
KW - Release
KW - Tetanus toxin
KW - Uptake
KW - [ h]imipramine binding 3
U2 - 10.1046/j.1471-4159.1999.0721991.x
DO - 10.1046/j.1471-4159.1999.0721991.x
M3 - Article
SN - 0022-3042
VL - 72
SP - 1991
EP - 1998
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
ER -