Classification, dimensionality reduction, and maximally discriminatory visualization of a multicentre H-MRS database of brain tumors

Paulo J.G. Lisboa, Enrique Romero, Alfredo Vellido, Margarida Julià-Sapé, Carles Arüs

Producción científica: Otra contribución

9 Citas (Scopus)

Resumen

The combination of an Artificial Neural Network classifier, a feature selection process, and a novel linear dimensionality reduction technique that provides a data projection for visualization and which preserves completely the class discrimination achieved by the classifier, is applied in this study to the analysis of an international, multi-centre 1H-MRS database of brain tumors. This combination yields results that are both intuitively interpretable and. very accurate. The method as a whole remains simple enough as to allow its easy integration in existing medical decision support systems.

Idioma originalInglés
Número de páginas6
DOI
EstadoPublicada - 2008

Series de publicaciones

NombreProceedings - 7th International Conference on Machine Learning and Applications, ICMLA 2008

Huella

Profundice en los temas de investigación de 'Classification, dimensionality reduction, and maximally discriminatory visualization of a multicentre H-MRS database of brain tumors'. En conjunto forman una huella única.

Citar esto