Resumen
We characterize the centers of the quasi-homogeneous planar polynomial differential systems of degree three. Such systems do not admit isochronous centers. At most one limit cycle can bifurcate from the periodic orbits of a center of a cubic homogeneous polynomial system using the averaging theory of first order. © 2013 Elsevier Inc.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 233-250 |
Publicación | Advances in Mathematics |
Volumen | 254 |
DOI | |
Estado | Publicada - 20 mar 2014 |