Brain tumor pathological area delimitation through Non-negative Matrix Factorization

Sandra Ortega-Martorell*, Paulo J.G. Lisboa, Alfredo Vellido, Rui V. Simões, Margarida Julià-Sapé, Carles Arús

*Autor correspondiente de este trabajo

Producción científica: Otra contribución

Resumen

Pattern Recognition and Data Mining can provide invaluable insights in the field of neuro oncology. This is because the clinical analysis of brain tumors requires the use of non-invasive methods that generate complex data in electronic format. Magnetic resonance, in the modalities of imaging and spectroscopy, is one of these methods that has been widely applied to this purpose. The heterogeneity of the tissue in the brain volumes analyzed by magnetic resonance remains a challenge in terms of pathological area delimitation. In this brief paper, we show that the Convex-Nonnegative Matrix Factorization technique can be used to extract MRS signal sources that are extremely tissue type-specific and that can be used to delimit these pathological areas with great accuracy.

Idioma originalInglés estadounidense
Número de páginas6
DOI
EstadoPublicada - 2011

Series de publicaciones

NombreProceedings - IEEE International Conference on Data Mining, ICDM
ISSN (impreso)1550-4786

Huella

Profundice en los temas de investigación de 'Brain tumor pathological area delimitation through Non-negative Matrix Factorization'. En conjunto forman una huella única.

Citar esto