Block-Wise Intra-Prediction of Imaging Data Based on Overfitted Neural Networks with On-Line Learning

Producción científica: Capítulo del libroCapítuloInvestigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

Block-wise intra-prediction is a key technique used by modern video codecs to reduce the amount of data to be compressed. Recently, machine learning (ML) has successfully improved block-wise intra-prediction by employing neural networks. Notwithstanding, the performance of such ML-based methods depends on the amount, quality, and relevance of the training data. Furthermore, they require signalling the learned parameters into the bitstream to be able to reconstruct the original data after decompression, thus increasing bitrates. This work proposes a novel block-wise intra-prediction strategy based on fully connected neural networks (FC-NNs) that avoids the two aforementioned shortcomings within the context of lossless compression. To do so, shallow FC-NNs are used, whose parameters are refined in an on-line manner using only the data being predicted. This allows to accurately fit the FC-NNs to the data of interest and replicate the optimization process, avoiding signaling the learned parameters. Experimental results indicate that the proposed ML-based intra-prediction strategy can outperform the intra-prediction used by modern video codecs with prediction accuracy gains of up to 7.01 dB PSNR.

Idioma originalInglés
Título de la publicación alojada2021 IEEE 31st International Workshop on Machine Learning for Signal Processing, MLSP 2021
ISBN (versión digital)9781728163383
DOI
EstadoPublicada - 2021

Serie de la publicación

NombreIEEE International Workshop on Machine Learning for Signal Processing, MLSP
Volumen2021-October
ISSN (versión impresa)2161-0363
ISSN (versión digital)2161-0371

Huella

Profundice en los temas de investigación de 'Block-Wise Intra-Prediction of Imaging Data Based on Overfitted Neural Networks with On-Line Learning'. En conjunto forman una huella única.

Citar esto