TY - JOUR
T1 - Bioelectrochemical systems for energy storage
T2 - A scaled-up power-to-gas approach
AU - Ceballos-Escalera, Alba
AU - Molognoni, Daniele
AU - Bosch-Jimenez, Pau
AU - Shahparasti, Mahdi
AU - Bouchakour, Salim
AU - Luna, Alvaro
AU - Guisasola, Albert
AU - Borràs, Eduard
AU - Della Pirriera, Monica
PY - 2020/2/15
Y1 - 2020/2/15
N2 - The development and implementation of energy storage solutions is essential for the sustainability of renewable energy penetration in the electrical system. In this regard, power-to-gas technologies are useful for seasonal, high-capacity energy storage. Bioelectrochemical systems for electromethanogenesis (EMG-BES) represent an additional power-to-gas technology to the existing chemical and biological methanation. EMG-BES process can be retrofitted in traditional anaerobic digesters, with advantages in terms of biologic process stability and high-quality biogas production. Nowadays, there are no reported studies of scaled-up EMG-BES plants for energy storage. The present work describes the setup and operation of a medium-scale EMG-BES prototype for power-to-gas, storing energy in the form of biomethane. The prototype was built by stacking 45 EMG-BES cells, accounting for a total volume of 32 L. It was continuously fed with 10 L day−1 municipal wastewater, and it was long-term operated at different voltage and temperature ranges. A steady-state current density demand of 0.5 A m−2 was achieved at 32 °C while producing 4.4 L CH4 m−2 d−1 and removing 70% of the initial organic matter present in wastewater. Microbial competition between electro-active bacteria and acetoclastic methanogens was observed. Energy storage efficiency was estimated around 42–47%, analyzing surplus CH4 production obtained when applying voltage to the stack. A first order electric model was calculated, based on the results of a series of electrical characterization tests. The model may be used in the future to design the converter for EMG-BES plant connection to the electrical grid. The obtained results show that energy storage based on EMG-BES technology is possible, as well as its future potential, mixing renewable power overproduction, biomethane generation and wastewater treatment under the circular economy umbrella.
AB - The development and implementation of energy storage solutions is essential for the sustainability of renewable energy penetration in the electrical system. In this regard, power-to-gas technologies are useful for seasonal, high-capacity energy storage. Bioelectrochemical systems for electromethanogenesis (EMG-BES) represent an additional power-to-gas technology to the existing chemical and biological methanation. EMG-BES process can be retrofitted in traditional anaerobic digesters, with advantages in terms of biologic process stability and high-quality biogas production. Nowadays, there are no reported studies of scaled-up EMG-BES plants for energy storage. The present work describes the setup and operation of a medium-scale EMG-BES prototype for power-to-gas, storing energy in the form of biomethane. The prototype was built by stacking 45 EMG-BES cells, accounting for a total volume of 32 L. It was continuously fed with 10 L day−1 municipal wastewater, and it was long-term operated at different voltage and temperature ranges. A steady-state current density demand of 0.5 A m−2 was achieved at 32 °C while producing 4.4 L CH4 m−2 d−1 and removing 70% of the initial organic matter present in wastewater. Microbial competition between electro-active bacteria and acetoclastic methanogens was observed. Energy storage efficiency was estimated around 42–47%, analyzing surplus CH4 production obtained when applying voltage to the stack. A first order electric model was calculated, based on the results of a series of electrical characterization tests. The model may be used in the future to design the converter for EMG-BES plant connection to the electrical grid. The obtained results show that energy storage based on EMG-BES technology is possible, as well as its future potential, mixing renewable power overproduction, biomethane generation and wastewater treatment under the circular economy umbrella.
KW - Biomethane
KW - Electromethanogenesis
KW - Microbial electrochemical technologies
KW - Modelling
KW - Power-to-gas
KW - Renewable energy
UR - http://www.scopus.com/inward/record.url?scp=85075376002&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2019.114138
DO - 10.1016/j.apenergy.2019.114138
M3 - Artículo
AN - SCOPUS:85075376002
SN - 0306-2619
VL - 260
JO - Applied Energy
JF - Applied Energy
M1 - 114138
ER -