Bifurcation analysis of the Microscopic Markov Chain Approach to contact-based epidemic spreading in networks

Alex Arenas*, Antonio Garijo, Sergio Gómez, Jordi Villadelprat

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

6 Citas (Scopus)

Resumen

The dynamics of many epidemic compartmental models for infectious diseases that spread in a single host population present a second-order phase transition. This transition occurs as a function of the infectivity parameter, from the absence of infected individuals to an endemic state. Here, we study this transition, from the perspective of dynamical systems, for a discrete-time compartmental epidemic model known as Microscopic Markov Chain Approach, whose applicability for forecasting future scenarios of epidemic spreading has been proved very useful during the COVID-19 pandemic. We show that there is an endemic state which is stable and a global attractor and that its existence is a consequence of a transcritical bifurcation. This mathematical analysis grounds the results of the model in practical applications.

Idioma originalInglés
Número de artículo112921
Número de páginas15
PublicaciónChaos, Solitons and Fractals
Volumen166
DOI
EstadoPublicada - ene 2023

Huella

Profundice en los temas de investigación de 'Bifurcation analysis of the Microscopic Markov Chain Approach to contact-based epidemic spreading in networks'. En conjunto forman una huella única.

Citar esto