Algebraic limit cycles bifurcating from algebraic ovals of quadratic centers

Jaume Llibre, Yun Tian

Producción científica: Contribución a una revistaArtículoInvestigación

2 Citas (Scopus)

Resumen

© 2018 World Scientific Publishing Company. In the integrability of polynomial differential systems it is well known that the invariant algebraic curves play a relevant role. Here we will see that they can also play an important role with respect to limit cycles. In this paper, we study quadratic polynomial systems with an algebraic periodic orbit of degree 4 surrounding a center. We show that there exists only one family of such systems satisfying that an algebraic limit cycle of degree 4 can bifurcate from the period annulus of the mentioned center under quadratic perturbations.
Idioma originalInglés
Número de artículo1850145
PublicaciónInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Volumen28
DOI
EstadoPublicada - 1 nov 2018

Huella

Profundice en los temas de investigación de 'Algebraic limit cycles bifurcating from algebraic ovals of quadratic centers'. En conjunto forman una huella única.

Citar esto