Agent-based Model for Transport Order Assignment in AGV Systems

Daniel Rivas, Lluís Ribas-Xirgo

Producción científica: Capítulo del libroCapítuloInvestigaciónrevisión exhaustiva

8 Citas (Scopus)

Resumen

Transportation to solve intralogistics is becoming as complex as managing transportation in road logistics. Luckily, it takes place in structured environments where automation is easier. This work is about solving the task assignment problem for a group of automated guided vehicles (AGVs) serving the internal transport of a warehouse or factory. Instead of having a centralized task planner, we use an agent-based approach where agents represent all the stakeholders in the transport system. Namely, the clients are the transport orders and the taxis, the AGVs. We have modeled client and taxi behaviors by using extended finite-state stack machines (EFS2Ms) because they enable both modeling belief-desire-intention (BDI) agents and lower-level controllers. As a result, agent software is produced in a systematic way and, what is more, analyses of different working conditions can be done to fine-tune parameters of the models to achieve an efficient transportation. Results on one realistic study-case show that average service times can be shortened with respect to fixed planning and that this system can operate in legacy systems.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2019
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas947-954
Número de páginas8
ISBN (versión digital)9781728103037
DOI
EstadoPublicada - sept 2019

Serie de la publicación

NombreIEEE International Conference on Emerging Technologies and Factory Automation, ETFA
Volumen2019-September
ISSN (versión impresa)1946-0740
ISSN (versión digital)1946-0759

Huella

Profundice en los temas de investigación de 'Agent-based Model for Transport Order Assignment in AGV Systems'. En conjunto forman una huella única.

Citar esto