TY - JOUR
T1 - Accurate 3D fireball trajectory and orbit calculation using the 3D-firetoc automatic Python code
AU - Peña-Asensio, Eloy
AU - Trigo-Rodríguez, Josep Maria
AU - Gritsevich, Maria
AU - Rimola, Albert
N1 - Funding Information:
JMT-R, EPA, and AR acknowledge financial support from the SpanishMinistry (PGC2018-097374-B-I00 funded byMCI-AEI-FEDER, PI: JMT-R; CTQ2017-89132-P, PI: AR). MG acknowledges support from the Academy of Finland project no. 325806, and the Russian Foundation for Basic Research, project nos. 18-08-00074 and 19-05-00028. AR is indebted to the 'Ramon y Cajal' program and DIUE (project 2017SGR1323). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 865657) for the project 'Quantum Chemistry on Interstellar Grains' (QUANTUMGRAIN). We thank Prof. Jose A. Docobo and Dr. Pedro P. Campo for the video obtained to exemplify the software (Figs 1-3) recorded from Observatorio Astronomico Ramon Maria Aller (OARMA), Universidad de Santiago de Compostela
Publisher Copyright:
© 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2021/7/1
Y1 - 2021/7/1
N2 - The disruption of asteroids and comets produces cm-sized meteoroids that end up impacting the Earth's atmosphere and producing bright fireballs that might have associated shock waves or, in geometrically favourable occasions excavate craters that put them into unexpected hazardous scenarios. The astrometric reduction of meteors and fireballs to infer their atmospheric trajectories and heliocentric orbits involves a complex and tedious process that generally requires many manual tasks. To streamline the process, we present a software package called SPMN 3D Fireball Trajectory and Orbit Calculator (3D-firetoc), an automatic Python code for detection, trajectory reconstruction of meteors, and heliocentric orbit computation from video recordings. The automatic 3D-firetoc package comprises of a user interface and a graphic engine that generates a realistic 3D representation model, which allows users to easily check the geometric consistency of the results and facilitates scientific content production for dissemination. The software automatically detects meteors from digital systems, completes the astrometric measurements, performs photometry, computes the meteor atmospheric trajectory, calculates the velocity curve, and obtains the radiant and the heliocentric orbit, all in all quantifying the error measurements in each step. The software applies corrections such as light aberration, refraction, zenith attraction, diurnal aberration, and atmospheric extinction. It also characterizes the atmospheric flight and consequently determines fireball fates by using the α - β criterion that analyses the ability of a fireball to penetrate deep into the atmosphere and produce meteorites. We demonstrate the performance of the software by analysing two bright fireballs recorded by the Spanish Fireball and Meteorite Network (SPMN).
AB - The disruption of asteroids and comets produces cm-sized meteoroids that end up impacting the Earth's atmosphere and producing bright fireballs that might have associated shock waves or, in geometrically favourable occasions excavate craters that put them into unexpected hazardous scenarios. The astrometric reduction of meteors and fireballs to infer their atmospheric trajectories and heliocentric orbits involves a complex and tedious process that generally requires many manual tasks. To streamline the process, we present a software package called SPMN 3D Fireball Trajectory and Orbit Calculator (3D-firetoc), an automatic Python code for detection, trajectory reconstruction of meteors, and heliocentric orbit computation from video recordings. The automatic 3D-firetoc package comprises of a user interface and a graphic engine that generates a realistic 3D representation model, which allows users to easily check the geometric consistency of the results and facilitates scientific content production for dissemination. The software automatically detects meteors from digital systems, completes the astrometric measurements, performs photometry, computes the meteor atmospheric trajectory, calculates the velocity curve, and obtains the radiant and the heliocentric orbit, all in all quantifying the error measurements in each step. The software applies corrections such as light aberration, refraction, zenith attraction, diurnal aberration, and atmospheric extinction. It also characterizes the atmospheric flight and consequently determines fireball fates by using the α - β criterion that analyses the ability of a fireball to penetrate deep into the atmosphere and produce meteorites. We demonstrate the performance of the software by analysing two bright fireballs recorded by the Spanish Fireball and Meteorite Network (SPMN).
KW - Earth
KW - Meteorites, meteors, meteoroids
KW - Methods: analytical
KW - Methods: data analysis
KW - Planets and satellites: atmospheres
UR - http://www.scopus.com/inward/record.url?scp=85108611961&partnerID=8YFLogxK
U2 - 10.1093/mnras/stab999
DO - 10.1093/mnras/stab999
M3 - Article
AN - SCOPUS:85108611961
SN - 0035-8711
VL - 504
SP - 4829
EP - 4840
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -