A survey of graph-modification techniques for privacy-preserving on networks

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

71 Citas (Scopus)

Resumen

© 2016, Springer Science+Business Media Dordrecht. Recently, a huge amount of social networks have been made publicly available. In parallel, several definitions and methods have been proposed to protect users’ privacy when publicly releasing these data. Some of them were picked out from relational dataset anonymization techniques, which are riper than network anonymization techniques. In this paper we summarize privacy-preserving techniques, focusing on graph-modification methods which alter graph’s structure and release the entire anonymous network. These methods allow researchers and third-parties to apply all graph-mining processes on anonymous data, from local to global knowledge extraction.
Idioma originalInglés
Páginas (desde-hasta)341-366
PublicaciónArtificial Intelligence Review
Volumen47
N.º3
DOI
EstadoPublicada - 1 mar 2017

Huella

Profundice en los temas de investigación de 'A survey of graph-modification techniques for privacy-preserving on networks'. En conjunto forman una huella única.

Citar esto