A STAM Model Based on Spatiotemporal Airspace Sector Interdependencies to Minimize Tactical Flow Management Regulations

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

Resumen

The lack of airspace capacity poses a significant challenge for a sustainable air transport system, particularly in scenarios of future growing demand. Air traffic management digitalization opens pathways for innovative and efficient solutions to tackle existing inefficiencies arising from spatially fragmented airspace. While research has focused on digitalized ATM services to improve airspace capacity, synergies among adjacent sectors to utilize latent capacity remain unexplored. Using a sector network model, in this study, we analyze spatiotemporal sector interdependencies, quantify time-stamp topological interdependencies, and evaluate capacity enhancement possibilities for sectors unable to meet dynamic demand. The occupancy count dynamic evolution and poor correlation among the over-loaded sectors with the occupancy count of its adjacent sectors provide opportunities for a short-term ATM mechanism, ensuring sector-level capacity invulnerability and enhancing airspace capacity at the network level. A computational experiment using real data from the European airspace is carried out to illustrate and validate this innovative solution.
Idioma originalInglés
PublicaciónAerospace
Volumen10
N.º10
DOI
EstadoPublicada - 2023

Huella

Profundice en los temas de investigación de 'A STAM Model Based on Spatiotemporal Airspace Sector Interdependencies to Minimize Tactical Flow Management Regulations'. En conjunto forman una huella única.

Citar esto