A Scalable Reduced-Complexity Compression of Hyperspectral Remote Sensing Images Using Deep Learning

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

5 Descargas (Pure)

Resumen

Two key hurdles to the adoption of Machine Learning (ML) techniques in hyperspectral data compression are computational complexity and scalability for large numbers of bands. These are due to the limited computing capacity available in remote sensing platforms and the high computational cost of compression algorithms for hyperspectral data, especially when the number of bands is large. To address these issues, a channel clusterisation strategy is proposed, which reduces the computational demands of learned compression methods for real scenarios and is scalable for different sources of data with varying numbers of bands. The proposed method is compatible with an embedded implementation for state-of-the-art on board hardware, a first for a ML hyperspectral data compression method. In terms of coding performance, our proposal surpasses established lossy methods such as JPEG 2000 preceded by a spectral Karhunen-Loève Transform (KLT), in clusters of 3 to 7 bands, achieving a PSNR improvement of, on average, 9 dB for AVIRIS and 3 dB for Hyperion images.
Idioma originalInglés
Número de artículo4422
Número de páginas15
PublicaciónRemote Sensing
Volumen15
N.º18
DOI
EstadoPublicada - 8 sept 2023

Huella

Profundice en los temas de investigación de 'A Scalable Reduced-Complexity Compression of Hyperspectral Remote Sensing Images Using Deep Learning'. En conjunto forman una huella única.

Citar esto