Resumen
Two key hurdles to the adoption of Machine Learning (ML) techniques in hyperspectral data compression are computational complexity and scalability for large numbers of bands. These are due to the limited computing capacity available in remote sensing platforms and the high computational cost of compression algorithms for hyperspectral data, especially when the number of bands is large. To address these issues, a channel clusterisation strategy is proposed, which reduces the computational demands of learned compression methods for real scenarios and is scalable for different sources of data with varying numbers of bands. The proposed method is compatible with an embedded implementation for state-of-the-art on board hardware, a first for a ML hyperspectral data compression method. In terms of coding performance, our proposal surpasses established lossy methods such as JPEG 2000 preceded by a spectral Karhunen-Loève Transform (KLT), in clusters of 3 to 7 bands, achieving a PSNR improvement of, on average, 9 dB for AVIRIS and 3 dB for Hyperion images.
Idioma original | Inglés |
---|---|
Número de artículo | 4422 |
Número de páginas | 15 |
Publicación | Remote Sensing |
Volumen | 15 |
N.º | 18 |
DOI | |
Estado | Publicada - 8 sept 2023 |
Huella
Profundice en los temas de investigación de 'A Scalable Reduced-Complexity Compression of Hyperspectral Remote Sensing Images Using Deep Learning'. En conjunto forman una huella única.Tesis doctorales
-
Remote sensing data compression with neural networks
Mijares i Verdú, S. (Autor/a)Serra Sagrista, J. (Director/a) & Bartrina Rapesta, J. (Director/a), 25 jul 2024Tesis doctoral
Archivo