A reactive simheuristic using online data for a real-life inventory routing problem with stochastic demands

David Raba*, Alejandro Estrada-Moreno, Javier Panadero, Angel A. Juan

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

20 Citas (Scopus)

Resumen

In the context of a supply chain for the animal-feed industry, this paper focuses on optimizing replenishment strategies for silos in multiple farms. Assuming that a supply chain is essentially a value chain, our work aims at narrowing this chasm and putting analytics into practice by identifying and quantifying improvements on specific stages of an animal-feed supply chain. Motivated by a real-life case, the paper analyses a rich multi-period inventory routing problem with homogeneous fleet, stochastic demands, and maximum route length. After describing the problem and reviewing the related literature, we introduce a reactive heuristic, which is then extended into a biased-randomized simheuristic. Our reactive approach is validated and tested using a series of adapted instances to explore the gap between the solutions it provides and the ones generated by existing nonreactive approaches.

Idioma originalInglés
Páginas (desde-hasta)2785-2816
Número de páginas32
PublicaciónInternational Transactions in Operational Research
Volumen27
N.º6
DOI
EstadoPublicada - 1 nov 2020

Huella

Profundice en los temas de investigación de 'A reactive simheuristic using online data for a real-life inventory routing problem with stochastic demands'. En conjunto forman una huella única.

Citar esto