A non-parametric regression approach to repeated measures analysis in cancer experiments

M. Carme Ruiz De Villa, M. Salomé E. Cabral, Eduardo Escrich Escriche, Montse Solanas

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

2 Citas (Scopus)

Resumen

The validity conditions for univariate or multivariate analyses of repeated measures are highly sensitive to the usual assumptions. In cancer experiments, the data are frequently heteroscedastic and strongly correlated with time, and standard analyses do not perform well. Alternative non-parametric approaches can contribute to an analysis of these longitudinal data. This paper describes a method for such situations, using the results from a comparative experiment in which tumour volume is evaluated over time. First, we apply the non-parametric approach proposed by Raz in constructing a randomization F-test for comparing treatments. A local polynomial fit is conducted to estimate the growth curves and confidence intervals for each treatment. Finally, this technique is used to estimate the velocity of tumour growth.
Idioma originalInglés
Páginas (desde-hasta)601-611
PublicaciónJournal of Applied Statistics
Volumen26
N.º5
EstadoPublicada - 1 dic 1999

Huella

Profundice en los temas de investigación de 'A non-parametric regression approach to repeated measures analysis in cancer experiments'. En conjunto forman una huella única.

Citar esto