A method to classify data by fuzzy rule extraction from imbalanced datasets

Vicenç Soler, Jesus Cerquides, Josep Sabria, Jordi Roig, Marta Prim

Producción científica: Capítulo del libroCapítuloInvestigaciónrevisión exhaustiva

Resumen

We propose a method based on fuzzy rules for the classification of imbalanced datasets when understandability is an issue. We propose a new method for fuzzy variable construction based on modifying the set of fuzzy variables obtained by the RecBF/DDA algorithm. Later, these variables are combined into fuzzy rules by means of a Genetic Algorithm. The method has been developed for the detection of Down's syndrome in fetus. We provide empirical results showing its accuracy for this task. Furthermore, we provide more generic experimental results over UCI datasets proving that the method can have a wider applicability.

Idioma originalInglés
Título de la publicación alojadaArtificial Intelligence Research and Development
EditorialIOS Press BV
Páginas55-62
Número de páginas8
ISBN (versión impresa)1586036637, 9781586036638
EstadoPublicada - 2006

Serie de la publicación

NombreFrontiers in Artificial Intelligence and Applications
Volumen146
ISSN (versión impresa)0922-6389
ISSN (versión digital)1879-8314

Huella

Profundice en los temas de investigación de 'A method to classify data by fuzzy rule extraction from imbalanced datasets'. En conjunto forman una huella única.

Citar esto