A General and Predictive Understanding of Thermal Transport from 1D-and 2D-Confined Nanostructures: Theory and Experiment

Albert Beardo, Joshua L. Knobloch, Lluc Sendra, Javier Bafaluy, Travis D. Frazer, Weilun Chao, Jorge N. Hernandez-Charpak, Henry C. Kapteyn, Begona Abad, Margaret M. Murnane, F. Xavier Alvarez, Juan Camacho

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

23 Citas (Scopus)

Resumen

Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier's law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.

Idioma originalInglés
Páginas (desde-hasta)13019-13030
Número de páginas12
PublicaciónACS Nano
Volumen15
N.º8
Fecha en línea anticipada30 jul 2021
DOI
EstadoPublicada - 24 ago 2021

Huella

Profundice en los temas de investigación de 'A General and Predictive Understanding of Thermal Transport from 1D-and 2D-Confined Nanostructures: Theory and Experiment'. En conjunto forman una huella única.

Citar esto