A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty

Juliana Castaneda, Xabier A. Martin, Majsa Ammouriova, Javier Panadero, Angel A. Juan*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

7 Citas (Scopus)

Resumen

Stochastic, as well as fuzzy uncertainty, can be found in most real-world systems. Considering both types of uncertainties simultaneously makes optimization problems incredibly challenging. In this paper, we analyze the permutation flow shop problem (PFSP) with both stochastic and fuzzy processing times. The main goal is to find the solution (permutation of jobs) that minimizes the expected makespan. However, due to the existence of uncertainty, other characteristics of the solution are also taken into account. In particular, we illustrate how survival analysis can be employed to enrich the probabilistic information given to decision-makers. To solve the aforementioned optimization problem, we extend the concept of a simheuristic framework so it can also include fuzzy elements. Hence, both stochastic and fuzzy uncertainty are simultaneously incorporated in the PFSP. In order to test our approach, classical PFSP instances have been adapted and extended, so that processing times become either stochastic or fuzzy. The experimental results show the effectiveness of the proposed approach when compared with more traditional ones.

Idioma originalInglés
Número de artículo1760
Número de páginas17
PublicaciónMathematics
Volumen10
N.º10
DOI
EstadoPublicada - may 2022

Huella

Profundice en los temas de investigación de 'A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty'. En conjunto forman una huella única.

Citar esto