A biased-randomised algorithm for the capacitated facility location problem with soft constraints

Alejandro Estrada-Moreno*, Albert Ferrer, Angel A. Juan, Adil Bagirov, Javier Panadero

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

5 Citas (Scopus)

Resumen

This paper analyzes the single-source capacitated facility location problem (SSCFLP) with soft capacity constraints. Hence, the maximum capacity at each facility can be potentially exceed by incurring in a penalty cost, which increases with the constraint-violation gap. In some realistic scenarios, this penalty cost can be modelled as a piecewise function. As a result, the traditional cost-minimization objective becomes a non-smooth function that is difficult to optimise using exact methods. A mathematical model of this non-smooth SSCFLP is provided, and a biased-randomized iterated local search metaheuristic is proposed as a solving method. A set of computational experiments is run to illustrate our algorithm and test its efficiency.

Idioma originalInglés
Páginas (desde-hasta)1799-1815
Número de páginas17
PublicaciónJournal of the Operational Research Society
Volumen71
N.º11
DOI
EstadoPublicada - 1 nov 2020

Huella

Profundice en los temas de investigación de 'A biased-randomised algorithm for the capacitated facility location problem with soft constraints'. En conjunto forman una huella única.

Citar esto