Recombinant self-assembling nanoparticles for cancer therapy based on toxin and venom compunds

    Student thesis: Doctoral thesis


    The developed self-assembling platform allows the engineering of protein-only nanoparticles (NPs) capable to target and act selectively over cancer cells by means of the interaction with overexpressed receptors. The stability of the spherical NP structures and their adequate size, in combination with the involved targeting peptides, enhance their specificity. Also, the novel incorporation of toxin and venom segments have improved the therapeutic effects of these fully biocompatible materials, without the need of any external carrier or added material, thus fulfilling the newfangled concept for precision medicines that involve self-assembled, self-targeted and efficient vehicle-free recombinant drugs. A modified version of the catalytic ricin A chain, with the ability to diminish the undesired vascular leak syndrome side effects but retaining its natural cytotoxicity, was adapted to the protein platform. The design was developed with the peptide T22 in the N-terminal, which binds CXCR4, and a his-tag in the C-terminal. This was combined with a furin cleavable site fragment in order to release the protein intracellularly, and a KDEL sequence to avoid endoplasmic reticulum secretion. Purified soluble CXCR4-targeted ricin A chain NPs with an average diameter of 11 nm, reached a 100-fold cytotoxic improvement with an IC50 of 13 ± 0.5 x 10 -9 M in HeLa cells. Also, insoluble 400-600 nm inclusion bodies were produced by recombinant methods and purified, with partial cytotoxic results. The receptor-dependent mechanism of T22-mRTA-H6 was verified and evaluated in an acute myeloid leukemia (AML) mouse model by systemic administration through a vein tail injection where an important blockage of the leukemic cells was verified without side systemic or histological toxicity in healthy organs. In a similar way, chlorotoxin (CTX) was also incorporated to the protein platform in order to take advantage of its targeting and therapeutic effect in glioblastoma (GBM), both functions in one peptide. Two versions that target protein Annexin-2 and the matrix metalloproteinase MMP-2 were engineered, namely CTX-GFP-H6 and CTX-KRKRK-GFP-H6. The soluble NPs of an average dimeter of 12 nm were incubated with HeLa cells, overexpressing annexin-2, and in U87MG cells, overexpressing MMP2. Both versions were fully fluorescent but CTX-GFP-H6 presented mild cytotoxic effects, whereas CTX-KRKRK-GFP-H6 showed to be more cytotoxic in U87MG cells than in HeLa cells. The selective affinity of CTX was confirmed by means of evaluating its targeting using a monoclonal antibody and a polyclonal serum against the cell surface protein, acting as a CTX receptor.
    Date of Award22 Jun 2020
    Original languageEnglish
    SupervisorMiguel Angel Martínez de la Sierra (Thesis board president), Nerea Roher Armentia (Thesis board secretary), Antonio Pedro Villaverde Corrales (Director), Esther Vazquez Gomez (Director) & Ugutz Unzueta Elorza (Director)

    Cite this