Multi-objective optimization and multicriteria design of PI/PID controllers

Student thesis: Doctoral thesis

Abstract

Nowadays, the proportional integral and proportional integral derivatives are the most used control algorithm in the industry. Moreover, the fractional controllers have received attention recently for both, the research community and from the industrial point of view. Owing to this, in this thesis some of the scenarios involve the tuning of these controllers by using the Multiobjective Optimization Design procedure. This procedure focuses on providing reasonable trade-off among the conflictive objectives and brings the designer the possibility to appreciate the comparison of the design objectives. This thesis is divided in three parts. The first part, presented the fundamentals of the control system showing and discussing the different trade-offs between performance/robustness and servo/regulation operation modes. On the other hand a background on multi-objective optimization has been provided. The second part, introduces the Nash solution as a multi-criteria decision making technique, to select a point from the Pareto front that represent the best compromise among the design objective. This solution provides a semi-automatic selection from the Pareto front approximation and offers a good trade-off between the goal objectives. Hereafter, a Multi-stage approach for the multi-objective optimization process is presented. This approach involves two algorithms: a deterministic and evolutionary algorithm. In which both algorithms complement each other in despite of their drawbacks and improve the results of the overall optimization in terms of convergence and accuracy. Further, the introduction of reliability based objective into the multi-objective problem is carried out, to measure the performance degradation. It is worthwhile to mention that, due to the existence of uncertainties in real-world designing and manufacturing having this design objective will give another perspective to the designer. In order to validate the approach, two different case studies has been considered, the Boiler control problem for controller tuning and as second case, a non-linear Peltier Cell. Finally, the third part of this thesis, the contributions on controller tuning have been presented. First, a set of tuning rules based on the NS for a proportional-integral (PI) controller have been devised, where the robustness/performance trade-off have been considered. Moreover, as a second case it is presented a tuning for proportional-integral-derivative controller where the trade-off of the performance/robustness and servo/regulation operation mode has been considered. Moreover, the fractional-order-proportional-integral-derivative controller is tuned by using the Multi-stage approach for the MOO process.
Date of Award22 Jul 2016
Original languageEnglish
SupervisorRamon Vilanova Arbos (Director)

Cite this

'