Estructura poblacional y mecanismos de resistencia a antibióticos en Campylobacter jejuni aislados en humanos y aves

Student thesis: Doctoral thesis

Abstract

Campylobacter jejuni is considered one of the main enteric pathogens worldwide. In our study, a high genetic variability was observed in C. jejuni strains isolated from human, broiler and wild bird samples. Comparatively wild birds showed the most distinctive features among the three populations. Using pulsed field gel electrophoresis, only 4 clones were identified, each consisting of between 2 and 6 strains; 3 clones included wild bird strains and 1 clone included broiler strains. No clone was identified from strains isolated from human samples because the patients selected for this study were not associated with any outbreak. Using the MLST technique, 64 sequence types (ST) were identified, only 3 of which were found in all three study populations, 10 in both human and broiler samples, and no ST was shared between wild birds and humans, or wild birds and broilers. Among the strains, a high percentage of resistance was observed to tetracycline (71.3%), ciprofloxacin (67.3%), nalidixic acid (64.6%) and ampicillin (63.3%), and to a lesser extent to aminoglycosides (7.3%). Strains isolated from broiler samples showed the highest resistance to these antimicrobials, followed by those isolated from humans and finally from wild bird samples. More than half of the strains studied (58.2%) presented multidrug resistance, principally, to ampicillin, ciprofloxacin and tetracycline. The mechanisms involved in ampicillin and tetracycline resistance were not exclusively due to the presence of the blaOXA, tetO / tetA genes, but the Thr86Ile mutation in the gyrA gene was responsible for the resistance to ciprofloxacin. Also, in most cases, enzymes that modify aminoglycosides were responsible for the resistance observed to gentamicin, kanamycin and streptomycin. Strains analysis by Whole Genome Sequencing and the determination of cgMLST and wgMLST, enabled the establishment of a cut-off point to define the epidemiological relationships between strains more precisely. Moreover, the use of this tool together with analysis with different software allowed genes and point mutations responsible for antimicrobial resistance to be identified, which permitted the information obtained by more conventional techniques in this study to be verified or corroborated. The data obtained in this study, confirms that campylobacteriosis in humans is caused by the consumption of contaminated broiler meat, and that this contamination can occur outside of breeding farms, and is associated with transportation and slaughterhouse management. We also observed that C. jejuni in wild birds has high host-pathogen specificity, and that the presence of these birds in urban areas favors the dissemination of the pathogen, which represents a potential contamination risk for humans.
Date of Award16 Jul 2018
Original languageSpanish
SupervisorFerran Navarro Risueño (Director)

Cite this

'