Weakly Supervised Fog Detection

Adrian Galdran, Pedro Costa, Javier Vazquez-Corral, Aurelio Campilho

Research output: Chapter in BookChapterResearchpeer-review

1 Citation (Scopus)

Abstract

Image dehazing tries to solve an undesired loss of visibility in outdoor images due to the presence of fog. Recently, machine-learning techniques have shown great dehazing ability. However, in order to be trained, they require training sets with pairs of foggy images and their clean counterparts, or a depth-map. In this paper, we propose to learn the appearance of fog from weakly-labeled data. Specifically, we only require a single label per-image stating if it contains fog or not. Based on the Multiple-Instance Learning framework, we propose a model that can learn from image-level labels to predict if an image contains haze reasoning at a local level. Fog detection performance of the proposed method compares favorably with two popular techniques, and the attention maps generated by the model demonstrate that it effectively learns to disregard sky regions as indicative of the presence of fog, a common pitfall of current image dehazing techniques.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
Pages2875-2879
Number of pages5
ISBN (Electronic)9781479970612
DOIs
Publication statusPublished - 29 Aug 2018

Publication series

NameProceedings - International Conference on Image Processing, ICIP
ISSN (Print)1522-4880

Keywords

  • Fog Detection
  • Image Dehazing
  • Multiple-Instance Learning
  • Weakly-Supervised Learning

Fingerprint

Dive into the research topics of 'Weakly Supervised Fog Detection'. Together they form a unique fingerprint.

Cite this