WCE polyp detection with triplet based embeddings

Pablo Laiz, Jordi Vitrià, Hagen Wenzek, Carolina Malagelada, Fernando Azpiroz, Santi Seguí

Research output: Contribution to journalArticleResearchpeer-review

6 Citations (Scopus)

Abstract

Wireless capsule endoscopy is a medical procedure used to visualize the entire gastrointestinal tract and to diagnose intestinal conditions, such as polyps or bleeding. Current analyses are performed by manually inspecting nearly each one of the frames of the video, a tedious and error-prone task. Automatic image analysis methods can be used to reduce the time needed for physicians to evaluate a capsule endoscopy video. However these methods are still in a research phase. In this paper we focus on computer-aided polyp detection in capsule endoscopy images. This is a challenging problem because of the diversity of polyp appearance, the imbalanced dataset structure and the scarcity of data. We have developed a new polyp computer-aided decision system that combines a deep convolutional neural network and metric learning. The key point of the method is the use of the Triplet Loss function with the aim of improving feature extraction from the images when having small dataset. The Triplet Loss function allows to train robust detectors by forcing images from the same category to be represented by similar embedding vectors while ensuring that images from different categories are represented by dissimilar vectors. Empirical results show a meaningful increase of AUC values compared to state-of-the-art methods. A good performance is not the only requirement when considering the adoption of this technology to clinical practice. Trust and explainability of decisions are as important as performance. With this purpose, we also provide a method to generate visual explanations of the outcome of our polyp detector. These explanations can be used to build a physician's trust in the system and also to convey information about the inner working of the method to the designer for debugging purposes.

Original languageEnglish
Pages (from-to)101794
JournalComputerized Medical Imaging and Graphics
Volume86
DOIs
Publication statusPublished - Dec 2020

Fingerprint

Dive into the research topics of 'WCE polyp detection with triplet based embeddings'. Together they form a unique fingerprint.

Cite this