Abstract
Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in real-world images? Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the data set shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector. © 2014 IEEE.
Original language | English |
---|---|
Article number | 6587038 |
Pages (from-to) | 797-809 |
Journal | IEEE Transactions on Pattern Analysis and Machine Intelligence |
Volume | 36 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Jan 2014 |
Keywords
- data set shift
- domain adaptation
- Pedestrian detection
- photo-realistic computer animation