TY - JOUR
T1 - Vanadate raises fructose 2,6-bisphosphate concentrations and activates glycolysis in rat hepatocytes
AU - Gomez-Foix, A. M.
AU - Rodriguez-Gil, J. E.
AU - Fillat, C.
AU - Guinovart, J. J.
AU - Bosch, F.
PY - 1988/1/1
Y1 - 1988/1/1
N2 - In rat hepatocytes, vanadate increases fructose 2,6-bisphosphate (Fru-2,6-P2) in a time- and dose-dependent manner, and counteracts the decrease in this metabolite caused by glucagon, forskolin or exogenous cyclic AMP. Vanadate does not directly modify the activity of 6-phosphofructo-2-kinase, even though it can counteract the inactivation of this enzyme caused by glucagon. Furthermore, vanadate raises the yield of 3H2O from [3-3H]glucose, indicating that it increases the flux through 6-phosphofructo-1-kinase. Moreover, vanadate in hepatocytes incubated in the presence of glucose increases the production of both lactate and CO2. Therefore vanadate has insulin-like effects on the glycolytic pathway in rat hepatocytes. These results clearly contrast with our previous observation that vanadate exerts glycogenolytic non-insulin-like effects on glycogen synthase and phosphorylase.
AB - In rat hepatocytes, vanadate increases fructose 2,6-bisphosphate (Fru-2,6-P2) in a time- and dose-dependent manner, and counteracts the decrease in this metabolite caused by glucagon, forskolin or exogenous cyclic AMP. Vanadate does not directly modify the activity of 6-phosphofructo-2-kinase, even though it can counteract the inactivation of this enzyme caused by glucagon. Furthermore, vanadate raises the yield of 3H2O from [3-3H]glucose, indicating that it increases the flux through 6-phosphofructo-1-kinase. Moreover, vanadate in hepatocytes incubated in the presence of glucose increases the production of both lactate and CO2. Therefore vanadate has insulin-like effects on the glycolytic pathway in rat hepatocytes. These results clearly contrast with our previous observation that vanadate exerts glycogenolytic non-insulin-like effects on glycogen synthase and phosphorylase.
M3 - Article
SN - 0264-6021
VL - 255
SP - 507
EP - 512
JO - Biochemical Journal
JF - Biochemical Journal
IS - 2
ER -