Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension

Elisabet Vila, Montse Solé, Núria Masip, Lídia Puertas-Umbert, Sergi Amaro, Ana Paula Dantas, Mercedes Unzeta, Pilar D'Ocon, Anna Maria Planas, Ángel Chamorro, Francesc Jiménez-Altayó

Research output: Contribution to journalArticleResearch

13 Citations (Scopus)


© 2019 Elsevier Inc. Uric acid (UA) is a promising protective treatment in ischaemic stroke, but the precise molecular targets underlying its in vivo beneficial actions remain unclear. High concentrations of UA inhibit angiogenesis of cultured endothelial cells via Krüppel-like factor 2 (KLF)-induced downregulation of vascular endothelial growth factor (VEGF), a pro-angiogenic mediator that is able to increase blood–brain barrier (BBB) permeability in acute stroke. Here, we investigated whether UA treatment after ischaemic stroke protects brain endothelial cell functions and modulates the KLF2-VEGF-A axis. Transient intraluminal middle cerebral artery (MCA) occlusion/reperfusion was induced in adult male spontaneously hypertensive (SHR) rats and corresponding normotensive Wistar-Kyoto (WKY) rats. Animals received UA (16 mg/kg) or vehicle (Locke's buffer) i.v. at reperfusion. BBB permeability was evaluated by Evans blue extravasation to the brain and in human cerebral endothelial hCMEC/D3 cells under oxygen-glucose deprivation/re-oxygenation. Circulating VEGF-A levels were measured in rats and acute ischaemic stroke patients from the URICO‐ICTUS trial. Angiogenesis progression was assessed in Matrigel-cultured MCA. Worse post-stroke brain damage in SHR than WKY rats was associated with higher hyperaemia at reperfusion, increased Evans blue extravasation, exacerbated MCA angiogenic sprouting, and higher VEGF-A levels. UA treatment reduced infarct volume and Evans blue leakage in both rat strains, improved endothelial cell barrier integrity and KLF2 expression, and lowered VEGF-A levels in SHR rats. Hypertensive stroke patients treated with UA showed lower levels of VEGF-A than patients receiving vehicle. Consistently, UA prevented the enhanced MCA angiogenesis in SHR rats by a mechanism involving KLF2 activation. We conclude that UA treatment after ischaemic stroke upregulates KLF2, reduces VEGF-A signalling, and attenuates brain endothelial cell dysfunctions leading to neuroprotection.
Original languageEnglish
Pages (from-to)115-128
JournalBiochemical Pharmacology
Publication statusPublished - 1 Jun 2019


  • Angiogenesis
  • Blood-brain barrier
  • Hypertension
  • Ischaemic stroke
  • Krüppel-like factor 2
  • Vascular endothelial growth factor-A


Dive into the research topics of 'Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension'. Together they form a unique fingerprint.

Cite this