Abstract
Quantum transport properties of disordered graphene with structural defects (Stone-Wales and divacancies) are investigated using a realistic π-π* tight-binding model elaborated from ab initio calculations. Mean free paths and semiclassical conductivities are then computed as a function of the nature and density of defects (using an order-N real-space Kubo-Greenwood method). By increasing the defect density, the decay of the semiclassical conductivities is predicted to saturate to a minimum value of 4e2/πh over a large range (plateau) of carrier density (>0. 5×1014cm-2). Additionally, strong contributions of quantum interferences suggest that the Anderson localization regime could be experimentally measurable for a defect density as low as 1%. © 2011 American Physical Society.
Original language | English |
---|---|
Article number | 046803 |
Journal | Physical Review Letters |
Volume | 106 |
Issue number | 4 |
DOIs | |
Publication status | Published - 25 Jan 2011 |