Two different strategies to enhance osseointegration in porous titanium: Inorganic thermo-chemical treatment versus organic coating by peptide adsorption

Monica Ortiz-Hernandez, Katrin S. Rappe, Meritxell Molmeneu, Carles Mas-Moruno, Jordi Guillem-Marti, Miquel Punset, Cristina Caparros, Jose Calero, Jordi Franch, Mariano Fernandez-Fairen, Javier Gil

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)

Abstract

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. In this study, highly-interconnected porous titanium implants were produced by powder sintering with different porous diameters and open interconnectivity. The actual foams were produced using high cost technologies: Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and spark plasma sintering, and the porosity and/or interconnection was not optimized. The aim was to generate a bioactive surface on foams using two different strategies, based on inorganic thermo-chemical treatment and organic coating by peptide adsorption, to enhance osseointegration. Porosity was produced using NaCl as a space holder and polyethyleneglicol as a binder phase. Static and fatigue tests were performed in order to determine mechanical behaviors. Surface bioactivation was performed using a thermo-chemical treatment or by chemical adsorption with peptides. Osteoblast-like cells were cultured and cytotoxicity was measured. Bioactivated scaffolds and a control were implanted in the tibiae of rabbits. Histomorphometric evaluation was performed at 4 weeks after implantation. Interconnected porosity was 53% with an average diameter of 210 µm and an elastic modulus of around 1 GPa with good mechanical properties. The samples presented cell survival values close to 100% of viability. Newly formed bone was observed inside macropores, through interconnected porosity, and on the implant surface. Successful bone colonization of inner structure (40%) suggested good osteoconductive capability of the implant. Bioactivated foams showed better results than non-treated ones, suggesting both bioactivation strategies induce osteointegration capability.
Original languageEnglish
Article number2574
JournalInternational Journal of Molecular Sciences
Volume19
Issue number9
DOIs
Publication statusPublished - 1 Sep 2018

Keywords

  • Bioactive materials
  • Osseointegration
  • Porosity
  • Titanium foams

Fingerprint Dive into the research topics of 'Two different strategies to enhance osseointegration in porous titanium: Inorganic thermo-chemical treatment versus organic coating by peptide adsorption'. Together they form a unique fingerprint.

  • Cite this

    Ortiz-Hernandez, M., Rappe, K. S., Molmeneu, M., Mas-Moruno, C., Guillem-Marti, J., Punset, M., Caparros, C., Calero, J., Franch, J., Fernandez-Fairen, M., & Gil, J. (2018). Two different strategies to enhance osseointegration in porous titanium: Inorganic thermo-chemical treatment versus organic coating by peptide adsorption. International Journal of Molecular Sciences, 19(9), [2574]. https://doi.org/10.3390/ijms19092574